Abstract Submitted for the MAR07 Meeting of The American Physical Society

The ferroelectric to antiferroelectric transition in multiferroic $BiFe_{1-x}Cr_xO_3$ epitaxial films¹ DAE HO KIM, HO NYUNG LEE, MARIA VARELA, HANS M. CHRISTEN, Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN — With the renewed interest in multiferroics, intensive investigations on $BiFeO_3$ films have enhanced the understanding of the nature of the ferroelectricity and the weak parasitic ferromagnetism. In contrast, despite having similar structural and chemical properties as $BiFeO_3$, little is know about BiCrO₃, due to the difficulty of synthesizing single-phase material. We have grown high quality BiCrO₃ epitaxial films by pulsed laser deposition and revealed that they exhibit antiferroelectricity with an electric-field induced ferroelectric phase. This antiferroelectricity is consistent with the picture of the Bi lone pair inducing polarization in bismuth-based perovskites. Furthermore, we have grown $BiFe_{1-x}Cr_xO_3$ solid-solution epitaxial films from $BiFeO_3$ and $BiCrO_3$ targets and observed a ferroelectric to antiferroelectric transition with increasing the Cr content. The interplay between the structural and (anti) ferroelectric properties and the role of the epitaxial strain will be discussed.

¹Research sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy, under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC.

> Daeho Kim Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN

Date submitted: 30 Nov 2006

Electronic form version 1.4