Abstract Submitted for the MAR07 Meeting of The American Physical Society

Computational studies of small neutral vanadium oxide clusters and their reactions with sulfur dioxide ELENA JAKUBIKOVA, SHENG-GUI HE, YAN XIE, Colorado State University, Department of Chemistry, YOSHIYUKI MATSUDA, Tohoku University, Department of Chemistry, ELLIOT BERNSTEIN, Colorado Stete University, Department of Chemistry — Vanadium oxide is a catalytic system that plays an important role in the conversion of SO_2 to SO_3 . Density functional theory at the BPW91/LANL2DZ level is employed to obtain structures of VO_y (y=1,...,5), V₂O_y (y=2,...,7), V₃O_y (y=4,...,9), V₄O_y (y=7,...,12) and their complexes with SO_2 . BPW91/LANL2DZ is insufficient to describe properly relative V-O and S-O bond strengths of vanadium and sulfur oxides. Calibration of theoretical results with experimental data is necessary to compute enthalpies of reactions between $V_x O_y$ and SO₂. Theoretical results indicate SO₂ to SO conversion occurs for oxygen-deficient clusters and SO_2 to SO_3 conversion occurs for oxygenrich clusters. Subsequent experimental studies confirm the presence of SO in the molecular beam as well as the presence of $V_x O_y$ complexes with SO₂. Some possible mechanisms for SO_3 formation and catalyst regeneration for solids are also suggested.

> Elena Jakubikova Colorado State University, Department of Chemistry

Date submitted: 20 Nov 2006

Electronic form version 1.4