Thickness dependent properties of CMR Manganite thin films on lattice mismatched substrates: Distinguishing Strain and Interface Effects

ANTHONY DAVIDSON III, RAJESWARI KOLAGANI, ELLISAVETTA BACHAROVA, GRACE YONG, VERA SMOLYANINOVA, DAVID SCHAEFER, Towson University, RAJEH MUNDLE1, Towson University — Epitaxial thin films of CMR manganite materials have been known to show thickness dependent electrical and magnetic properties on lattice mismatched substrates. Below a critical thickness, insulator-metal transition is suppressed. These effects have been largely attributed to the role of bi-axial lattice mismatch strain. Our recent results of epitaxial thin films of La$_{0.67}$Ca$_{0.33}$MnO$_3$ (LCMO) on two substrates with varying degrees of compressive lattice mismatch indicate that, in addition to the effect of lattice mismatch strain, the thickness dependence of the properties are influenced by other factors possibly related to the nature of the film substrate interface and defects such as twin boundaries. We have compared the properties of LCMO films on (100) oriented LaAlO$_3$ and (001) oriented NdCaAlO$_4$ both of which induce compressive bi-axial strain. Interestingly, the suppression of the insulator-metal transition is less in films on NCAO which has a larger lattice mismatch. We will present results correlating the electrical and magneto transport properties with the structure and morphology of the films.

1Currently at Norfolk State University

Anthony Davidson III
Towson University

Date submitted: 13 Dec 2006
Electronic form version 1.4