Abstract Submitted for the MAR07 Meeting of The American Physical Society

Possibility of superconductivity in high pressure phases of BC₃¹ JONATHAN E. MOUSSA, MARVIN L. COHEN, UC Berkeley & LBNL — Using an ab-initio pseudopotential-local-density-approximation, we study the possibility of a high-pressure transition of graphitic planar sp² bonded BC₃ into an sp³ bonded covalent network. Energy barriers are examined for the predicted transition to the sp³ phase and for the observed onset of phase separation in BC₃ under high pressure, high temperature conditions [V. L. Solozhenko *et al.*, Appl. Phys. Lett. **85**, 1508 (2004)]. The sp³ phase of BC₃ is predicted to be metallic and superconducting and is similar to 25% boron-doped diamond without boron clusters. Calculations of phonon frequencies and electron-phonon coupling allow for an estimate of the superconducting transition temperature.

¹This work was supported by National Science Foundation Grant No. DMR04-39768, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by NERSC.

Jonathan E. Moussa UC Berkeley & LBNL

Date submitted: 20 Nov 2006 Electronic form version 1.4