Optical Properties of Cage Versus Space-Filling Gold Clusters: A TDLDA Study
WERONIKA WALKOSZ, JUAN C. IDROBO, SERDAR OGUT\(^1\), University of Illinois at Chicago, JINLAN WANG, JULIUS JELLINEK\(^2\), Chemistry Division, Argonne National Laboratory — Recent DFT computations\(^3\) have revealed that medium size Au\(_n\) clusters form hollow cage and space-filling structures that are energetically competitive. In fact, for \(n = 32\) and \(50\) the cage structures are more stable than their space-filling counterparts. Here we report results of large-scale computations on the optical absorption spectra of the most stable cage and space-filling forms of Au\(_n\), \(n = 32, 38, 44, 50\). The computations are performed using the time-dependant linear-response density functional formalism within the local-density approximation (TDLDA). We examine the trends in the low-energy (\(< 6\) eV) parts of the spectra as a function of the cluster size and structure and compare them with the predictions of the classical Mie theory.

\(^1\)Supported by DOE Grant No. DE-FG02-03ER15488
\(^2\)Supported by Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U. S. Department of Energy under Contract DE-AC-02-06CH11357

Serdar Ogut
University of Illinois at Chicago

Date submitted: 20 Nov 2006