Band structure engineering of LaMnO$_3$:SrTiO$_3$ superlattices at
the molecular level1 XIAOFANG Zhai, CHANDRA MOHAPATRA, F. Seitz
Materials Research Laboratory, University of Illinois, Urbana, IL,
ANAND BHATTACHARYA, Argonne National Laboratory, Argonne, IL,
AMISH SHAH, BIN JIANG, JIANGUO WEN, JIAN-MIN ZUO, JAMES ECKSTEIN,
F. Seitz Materials Research Laboratory, University of Illinois, Urbana, IL —
We have made single crystal short period superlattices consisting of
alternating slabs of LaMnO$_3$ and SrTiO$_3$, using atomic layer by
layer molecular beam epitaxy. The supercells consist of N-layers of
each component, with $N=1$, 2, 3, 4. Ellipsometric measurements of the
new materials show that optical absorption in the visible light range is
significantly different from bulk LaMnO$_3$ or SrTiO$_3$, and depends on N.
The new band structure is dependent on the superlattice design. This is an
type of engineered coherent “meta-materials”, and this fabrication
technique can be extended to other lattice matched transition metal
oxides with a wide range of conducting and magnetic
properties.

1This work was supported by the DOE BES at the F. Seitz Materials
Research Laboratory at the University of Illinois, Urbana.

Xiaofang Zhai
F. Seitz Materials Research Laboratory, University of Illinois, Urbana, IL