Measurement of the GaSb surface band bending potential from the magnetotransport characteristics of GaSb-InAs-AlSb quantum wells

PATRICK FOLKES, Army Research Laboratory, GODFREY GUMBS, Hunter College, CUNY, WEN XU, Australian National University, M. TAYSING-LARA, Army Research Laboratory — Low-temperature magnetotransport measurements on GaSb/InAs/AlSb coupled quantum well structures with a GaSb cap layer and self-consistent calculations of their electronic structure have led to the determination of the Fermi level at the surface, E_{FS}, of undoped molecular-beam-epitaxy-grown GaSb. E_{FS} is pinned around 0.2 eV above the top of the GaSb valence band when the GaSb cap layer is width is greater than 900 Å. For smaller GaSb cap widths, E_{FS} decreases with the GaSb width. The heterostructures’ Fermi level is determined by bulk donor defects in the AlSb layer adjacent to the InAs quantum well.

Patrick Folkes
Army Research Laboratory

Date submitted: 20 Nov 2006
Electronic form version 1.4