Superconducting properties of noncentrosymmetric Mg\textsubscript{10}Ir\textsubscript{19}B\textsubscript{16}1

TOMASZ KLIMCZUK, Faculty of Applied Physics, Gdansk University of Technology, Poland and Condensed Matter and Thermal Physics, Los Alamos National Laboratory, USA, ROBERT J. CAVA, Department of Chemistry, Princeton University, Princeton NJ 08544, USA, JOE D. THOMPSON, Condensed Matter and Thermal Physics, Los Alamos National Laboratory, USA — The magnetic, electrical transport and specific heat properties of the new ternary boride superconductor Mg\textsubscript{10}Ir\textsubscript{19}B\textsubscript{16} (T\textsubscript{C} = 5K) have been investigated. The polycrystalline Mg\textsubscript{10}Ir\textsubscript{19}B\textsubscript{16} sample was synthesized by reaction of Mg and Ir metal powders with amorphous boron powder. The material has a noncentrosymmetric crystal structure (I-43m) and therefore the superconducting properties are a subject of great interest.

1Work was performed under the auspices of the US Department of Energy, Office of Science