Spin-liquid phase in a spin-1/2 quantum magnet on the kagome lattice

SERGEI ISAKOV, YONG BAEK KIM, ARUN PARAMEKANTI, University of Toronto — We study a model of hard-core bosons with short-range repulsive interactions at half filling on the kagome lattice. This model is equivalent to an easy-axis spin-1/2 quantum model with no special conservation laws. Using quantum Monte Carlo numerics, we find that this model exhibits a continuous superfluid-insulator quantum phase transition, with exponents $z = 1$ and $\nu = 0.67(5)$. We show unambiguously that the insulator is a \mathbb{Z}_2 fractionalized spin liquid phase with short-ranged density and bond correlations, topological order, and exponentially decaying spatial vison correlations. In addition, we map out the finite temperature phase diagram. A Kosterlitz-Thouless finite temperature superfluid-insulator transition becomes strongly first order as the strength of the repulsive interactions increases. This is consistent with the zero temperature transition to the fractionalized phase.

Sergei Isakov
University of Toronto

Date submitted: 20 Nov 2006
Electronic form version 1.4