Ultra Low Density Materials Synthesized via an Aerosol Gelation Process

RAJAN DHAUBHADEL, AMITABHA CHAKRABARTI, CHRISTOPHER M. SORENSEN, Kansas State University — We synthesized carbon and silica ultra low dense and high specific surface area solids via aggregation and gelation of nano-sized particles in the aerosol phase. We named such solids as Aerosol Gels. The process of formation of an Aerosol Gel starts with a collection of individual nano-sized monomers which undergo Brownian aggregation and finally gel quickly relatively to the gravitational settling when the monomers are small enough (~ 10 nm radius) and the monomer volume fraction is high enough ($\geq 10^{-4}$). The Carbon Aerosol Gel was found to have high specific surface area ($200 - 350$ m2/g), an extremely low density ($2.5 - 5$ mg/cc) and a high electrical conductivity, properties similar to conventional aerogels. The Silica Aerosol Gel was also extremely porous with high specific surface area (~ 450 m2/g) and a very low density (~ 4mg/cc).