Abstract Submitted
for the MAR07 Meeting of
The American Physical Society

Testing the limits for critical currents in YBa$_2$Cu$_3$O$_7$ films
LEONARDO CIVALE, BORIS MAIOROV, SCOTT BAILY, HONGHUI ZHOU,
FRANK HUNTE, IGOR USOV, STEPHEN FOLTYN, TERRY HOLESINGER,
QUANXI JIA, Superconductivity Technology Center, LANL, Los Alamos, NM,
JUDITH MACMANUS-DRISCOLL, Dept. of Materials Science, University of Cam-
bridge, UK, HAIYAN WANG, Texas A & M University, College Station, TX —
Vortex pinning in YBa$_2$Cu$_3$O$_7$ films can be very strong. At low temperatures and
in the absence of applied magnetic field (H), critical current densities J_c of about
20% of the depairing limit have been obtained. This is as high as the best achieved
in commercial Nb-based superconducting wires after decades of optimization. Re-
markably, similar J_cs are attained in YBa$_2$Cu$_3$O$_7$ films grown by various methods
that produce vastly different nanostructures, suggesting that perhaps we are close
to an effective J_c limit regardless of the details of the pinning mechanisms. In con-
trast, the different types of pinning centers (either naturally occurring or artificially
introduced by material nanoengineering) produce distinctively different J_c behavior
as a function of H strength and orientation. I will present a comparison of pin-
ning mechanisms in YBa$_2$Cu$_3$O$_7$ films and will analyze the possibilities of further
improvements.

Leonardo Civale
Superconductivity Technology Center, LANL, Los Alamos, NM

Date submitted: 02 Dec 2006