Imaging of Few-electron InAs Quantum Dots in InAs/InP Nanowires

ERIN E. BOYD, HALVAR J. TRODAHL, Dept of Physics, Harvard Univ, ANIA BLESZYNSKI, Dept of Physics, Yale Univ, MICHAEL STOPA, Div of Eng and App Sci, Harvard Univ, R.M. WESTERVELT, Dept of Physics and Div of Eng and App Sci, Harvard Univ, LINUS E. FROBERG, LARS SAMUELSON, Dept of Solid State Physics, Lund Univ — InAs quantum dots are promising contenders for nanoelectronics, spintronics and quantum information processing. Their large g-factor makes manipulation of electron spins easier at higher temperatures. InAs dots, as small as 10 nm long holding only a few electrons, can be formed by InP barriers in InAs/InP nanowire heterostructures grown using chemical beam epitaxy. Coulomb blockade transport measurements done using metal contacts and a back gate show excellent results [1]. Using a liquid-He cooled scanning probe microscope, we imaged an InAs quantum dot that holds only one-electron, with the conducting tip as a movable gate [2]. Simulations of electron wavefunctions in the dot show the effect of the back gate and the moveable tip. [1] M. Björk et al., Nano Letters 4, 1621 (2004) [2] A. Bleszynski et al., 28th Int. Conf. Physics of Semiconductors, 2006

1Supported at Harvard by the ARO (W911NF-04-0343) and our NSEC (NSF PHY-01-17795).

Erin E. Boyd
Dept of Physics, Harvard Univ

Date submitted: 02 Dec 2006 Electronic form version 1.4