Effects of internal structural parameters on the properties of Ba-substituted La$_{0.5}$Sr$_{0.5}$MnO$_3$1 OMAR CHMAISSEM, BOGDAN DABROWSKI, STANISLAW KOLESNIK, LEOPOLDO SUESCUN, Northern Illinois University and Argonne National Laboratory, JAMES MAIS, TIMOTHY MAXWELL, Northern Illinois University, JAMES D. JORGENSEN2, Argonne National Laboratory — Barium substituted La$_{0.5}$Sr$_{0.5-x}$Ba$_x$MnO$_3$ materials have been synthesized and investigated using neutron powder diffraction. We show that Ba substitution suppresses the low temperature orbital-ordering previously observed in La$_{0.5}$Sr$_{0.5}$MnO$_3$, and demonstrate the evolution of the magnetic and nuclear structures as a function of increasing Ba content. All samples exhibit paramagnetic and ferromagnetic properties near room temperature. The effects of A-site ionic size, size variance, and strains in the lattice on the ferromagnetic ordering temperature, T_C, are discussed and compared with other members of the general La$_{0.5}$Ca$\text{Sr, Ba}_{0.5}$MnO$_3$ series. Depending on the substitution path, the relationship between T_C and $\langle r_A \rangle$ is either nearly constant or looks like an inverted parabola.

1Work at NIU was supported by NSF Grant DMR?0302617. At ANL, work supported by the U.S. Department of Energy, Office of Science, DE-AC02-06CH11357.
2Deceased

Omar Chmaissem
Northern Illinois University and Argonne National Laboratory

Date submitted: 02 Dec 2006 Electronic form version 1.4