Abstract Submitted for the MAR07 Meeting of The American Physical Society

Novel ground states in mixed bcc/fcc, high-/low-spin Fe-(Ni,Pd,Pt) from first-principles¹ SERGEY V. BARABASH², ROMAN V. CHEPULSKII³, VOLKER BLUM⁴, ALEX ZUNGER, National Renewable Energy Laboratory, Golden, CO 80401 — Among the observed ordered phases of Fe-X (X=Ni,Pd,Pt), some structures are curiously absent: L1₂ Fe₃Pt exists, but Fe₃Pd and Fe_3Ni do not; $L1_0$ FePt and FePd exist, but the stability of $L1_0$ FeNi is debated. Furthermore, the recently measured short range order (SRO) in Fe-rich Fe-Ni is at odds with L1₂-type SRO. Theory has been hindered by the appearance of geometric (bcc/fcc) and magnetic (high-spin [HS]/low-spin [LS]) bi-stabilities. We address such bi-stabilities by performing first-principles mixed-basis cluster expansion with added geometric and magnetic "filters," separating structures according to HS/LS and "degree" of fcc-ness and bcc-ness. We performed separate fcc HS and (for Fe-Pd) bcc HS cluster expansions. We predict that at low temperatures: (i) New ordered structures exist, including fcc Pt_8Ti -type FeX_8 and the (100) superlattices Fe_2Pd and Fe_2Pt ; (ii) All fcc Fe_3X compounds are unstable w.r.t. bcc $Fe + L1_0$ FeX (iii) Fcc FePd is unstable w.r.t. bcc Fe + (100) Fe₂Pd superlattice, while L1₀ FeNi is, in fact, stable w.r.t. bcc $Fe + L1_2$ FeNi₃. At high T, (iv) The SRO in Fe-rich Fe-Ni is governed by (100) superlattice ordering.

¹supported by DOE-SC-BES-DMS under NREL DE-AC36-99GO10337 ²⁻⁴presently at ²UCLA, ³CalTech, ⁴FHI, Berlin, Germany

> Sergey V. Barabash UCLA

Date submitted: 05 Dec 2006

Electronic form version 1.4