Abstract Submitted for the MAR07 Meeting of The American Physical Society

Multisite Interactions in Lattice-Gas Models of Adsorbates: Reconciling Adatom Relaxations at Steps¹ T.L. EINSTEIN, RAJESH SATHIYA-NARAYANAN, T.J. STASEVICH², U. of Maryland — In a lattice-gas (LG) framework for (111) cubic surfaces, pair interactions cannot distinguish A and B steps, but an orientation-dependent three adatom (trio) interaction can, as we verify with VASP for Cu(111).^{3b} However, on Pt(111), small clusters considerably underestimate the difference.⁴ For a sequence of overlayer configurations, we explore the role of lateral relaxations and how they complicate LG analysis. On Cu(100) our prior VASP calculations of a particular trio interaction energy (E_d) gave a large positive value.^{3c} This nearly cancels the attractive second-neighbor interaction energy (E₂), leading to a discrepancy between theory and experiment of step stiffness anisotropy.^{3a} Relaxations at step edges greatly reduce this repulsion. Since positiondependent interactions are improper in LG models, we show how to deal with this phenomenon using a quarto interactions. We comment on extensions to (110) faces and analytic expressions for step stiffness.

¹Supported by NSF MRSEC Grant DMR 05-20471, partially by DOE CMSN DEFG0205ER46227. Computing done at NCSA (NSF), UIUC.
²Now at Lab Receptor Biology, Nat'l Cancer Inst., NIH, Bethesda
³TJS et al., PRB a)70('04)245404, b)71('05)245414, c)73('06)115426.
⁴Feibelman, Surf. Sci. 463('00)L661; Michely et al., ibid. 256('91)217.

Theodore Einstein University of Maryland, College Park

Date submitted: 20 Nov 2006

Electronic form version 1.4