Spin-Exchange Optical Pumping of Solid Alkali Compounds

BRIAN PATTON, Princeton University Physics Department, KIYOSHI ISHIKAWA, Graduate School of Material Science, University of Hyogo, Japan, YUAN-YU JAU, WILLIAM HAPPER, Princeton University Physics Department — Spin-exchange optical pumping of noble gases has been used for many years to create highly non-equilibrium spin populations, with applications ranging from fundamental physics[1] to medical imaging[2]. In this procedure, angular momentum is transferred from circularly-polarized laser light to the electron spins of an alkali vapor and ultimately to the nuclei of a gas such as 3He or 129Xe. Here we show experimentally that a similar process can be used to polarize the nuclei of a solid film of cesium hydride which coats the walls of an optical pumping cell. We present nuclear magnetic resonance (NMR) data which demonstrate that the nuclear polarization of 133Cs in CsH can be enhanced above the Boltzmann limit in a 9.4-Tesla magnetic field. Possible spin-exchange mechanisms will be discussed, as well as the extension of this technique to other compounds.

This work was supported by AFOSR.