Abstract Submitted for the MAR07 Meeting of The American Physical Society

Comparison of Epitaxial Graphene grown on SiC(0001) and SiC(0001)¹ NIKHIL SHARMA, TIANBO LI, JOANNA HASS, XUEBIN LI, MICHAEL SPRINKLE, CLAIRE BERGER, WALT DE HEER, PHILLIP FIRST, Georgia Institute of Technology — Epitaxial graphene (EG) has been grown on both the Si-terminated (0001) and C-terminated (0001) faces of 4H and 6H SiC. It has been shown that EG on the C-terminated face has substantially higher carrier mobility ($\sim 25,000 \mathrm{cm}^2/\mathrm{V}\cdot\mathrm{s}$), although EG on either face shows similar intrinsic carrier density and magnetoresistance (MR) characteristic of graphene [1,2]. In this work, we use STM, LEED and Auger spectroscopy to compare the different growth methods and resulting morphologies of EG grown on the silicon- and carbon-terminated faces of SiC. UHV sublimation of silicon from SiC(0001) results in controllable growth of 1-5 ML of EG, with the thickness determined predominantly by the growth temperature. EG growth on $SiC(000\overline{1})$ via Si-sublimation is done in a low vacuum induction furnace, resulting in 5-30 ML thick films. Since MR results indicate that transport is dominated by an EG layer near the SiC interface [2], we will discuss methods to access the $EG/SiC(000\bar{1})$ interface by STM. [1] C. Berger, et al., J. Phys. Chem. B 108,19912 (2004). [2] C. Berger, et al., Science 312, 1191 (2006)

¹Work supported by NSF ECS-0404084

Nikhil Sharma Georgia Institute of Technology

Date submitted: 20 Nov 2006 Electronic form version 1.4