de Haas-van Alphen study of the Fermi Surface of Ce$_x$La$_{1-x}$B$_6$ as a function of composition: the evolution of field-dependent quasi-particle effective masses

IZABELA MIHUT, JOHN SINGLETON, ALBERT MIGLIORI, National High Magnetic Field Laboratory-LANL, Los Alamos, NM, LONG PHAM, Physics Department, University of California, Davis, CA, CIGDEM CAPAN, Physics Department, Louisiana State University, Baton Rouge, LA, ZACHARY FISK, Physics Department, University of California, Irvine, CA

The de Haas-van Alphen effect has been studied in single crystals of Ce$_x$La$_{1-x}$B$_6$ (0 ≤ x ≤ 0.075) using pulsed magnetic fields of up to 60 T and temperatures 0.38 K ≤ T ≤ 4.0 K. The low-field effective mass grows smoothly with increasing x. Moreover, for $x > 0$, the effective mass becomes a function of magnetic field, decreasing as the field rises. These results may be fitted using the extended Lifshitz-Kosevich formalism due to Wasserman, the decrease in mass reflecting the suppression of spin fluctuations by the field. The data also show that a previously-observed effect, attributed to complete spin polarization of one of the Fermi-surface sheets for $x ≥ 0.05$, is in fact an artifact of the field-dependent mass, ignored in previous works.