Temperature dependence of the uncompensated magnetization in Fe\textsubscript{x}Ni\textsubscript{1-x}F\textsubscript{2}/Co bilayers1 DAVID LEDERMAN, MIYEON CHEON, ZHONGYUAN LIU2, Department of Physics, West Virginia University — A giant uncompensated magnetization in Fe\textsubscript{x}Ni\textsubscript{1-x}F\textsubscript{2}/Co was observed in the hysteresis loops at low temperatures ($T < T_B \sim 55$ K), whose sign was correlated with the sign of the exchange bias field H_E. In this study, the uncompensated magnetization of $x = 0.05, 0.21$ and 0.49 samples was studied at different temperatures. The uncompensated magnetization was reversed at $H = -16$ kOe ($H = -14$ kOe) going from positive to negative fields and $H = +14$ kOe ($H = +11$ kOe) going from negative to positive fields at $T = 30$ K for the $x = 0.05$ ($x = 0.21$) sample. This asymmetry in the reversal means that the uncompensated magnetization in these samples has its own exchange bias field of $H_{EU} \sim -1$ kOe with a coercivity of 14 kOe. In the case of the $x = 0.49$ sample, the uncompensated magnetization has a coercivity of 23 kOe and a positive exchange bias $H_{EU} = +10$ kOe at $T = 30$ K. The coercive fields of the uncompensated magnetization decrease as the temperature increases while the magnitude of the uncompensated magnetization remains constant.

1This work was supported by the National Science Foundation.
2Presently at State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, China