Electric-field lithography of LaAlO$_3$/SrTiO$_3$ quasi-two-dimensional electron gas

CHENG CEN, JEREMY LEVY, STEFAN THIEL, JOCHEN MANNHART — Recent reports$^2,^3$ have indicated that the existence of polar discontinuities at the interface between LaAlO$_3$ and SrTiO$_3$ is unstable to the formation of a quasi-two-dimensional electron gas. Below a critical thickness electrons can still accumulate at the interface under the influence of an applied electric field3. We use a biased conducting atomic force microscope (AFM) probe to create conducting nanowires at the LaAlO$_3$/SrTiO$_3$ interface without physical alteration of the interface. The conducting regions written by AFM probe can be written and erased repeatedly. This form of quasi-two-dimensional lithography demonstrates the utility of the LaAlO$_3$/SrTiO$_3$ interface as a rewritable medium, with the potential for creating passive as well as active circuits such as field-effect transistors. (2 A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004). 3 S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313, 1942 (2006).)

1This work was supported by DMR-0333192 (JL) and Bundesministerium für Bildung und Forschung (project 13N6918A) and the DFG through the SFB 484 and by the THIOX project of the ESF.

Cheng Cen

Date submitted: 20 Nov 2006