Abstract Submitted for the MAR07 Meeting of The American Physical Society

Exciton binding energy and electron effective-mass in strain compensated InGaAsN/GaAs single Quantum Well¹ LIFANG XU, DINESH PATEL, CARMEN MENONI, Department of Electrical and Computer Engineering,Colorado State University, Fort Collins, CO 80523-1373, JENGYA YEH, LUKE MAWST, Reed Center for Photonics, Department of Electrical & Computer Engineering,University of Wisconsin-Madison, Madison, WI 53706, NELSON TANSU, Center for Optical Technologies, Department of Electrical and Computer Engineering,Lehigh University, Sinclair Laboratory, 7 Asa Drive, Bethlehem, PA — A detailed lineshape analysis of the temperature dependent photoluminescence spectra of $In_{0.4}Ga_{0.6}As_{1-y}N_y/GaAs$ quantum well (QW) (y=0; 0.005) is carried out. The analysis extracts the binding energy of the e₁-hh₁ ground-state exciton which equals 9.72 ± 1.24 meV and 17.5 ± 0.9 meV for InGaAs and InGaAsN (N=0.5%) single QW sample, respectively. By using a fractional dimension exciton binding energy model, an electron effective mass of $m_e^*=(0.11\pm0.015)m_0$ is determined for the highly strained dilute nitride single QW.

¹Work supported by the National Science Foundation under grant ECS 03134410.

Lifang Xu

Date submitted: 03 Dec 2006

Electronic form version 1.4