Weak charge disproportion and leading mechanisms in half-doped manganites.1 DMITRI VOLJA, WEI KU, WEI-GUO YIN, Brookhaven National Laboratory — The puzzling very weak charge disproportionation found in half-doped manganites such as La\textsubscript{1/2}Ca\textsubscript{1/2}MnO\textsubscript{3} is reconciled with the well-accepted Mn3+/Mn4+ picture of charge and orbital orders via our novel first-principles Wannier function analysis. The strong electron itinerancy is found to delocalize the \textquotedblleft Mn3+\textquotedblright Wannier states significantly, producing remarkable charge leaking into the \textquotedblleft Mn4+\textquotedblright sites. Thus, it is necessary to distinguish for this charge-transfer system actual charge from the occupation number. Finally, a realistic low-energy effective Hamiltonian is derived, revealing the interesting role of electron-electron interactions in the charge and orbital channels, which can be applied to other doping regions including the CMR phase.

1No. DE-AC02-98CH10886

Dmitri Volja
Brookhaven National Laboratory

Date submitted: 20 Nov 2006

Electronic form version 1.4