Abstract Submitted for the MAR07 Meeting of The American Physical Society

Magnetic ordering of new molecule-based magnet: [Fe(TCNE)(NCMe)₂][FeCl₄].¹ KONSTANTIN POKHODNYA, University of Utah/Ohio State University, MICHAEL BONNER, University of Utah, JAE-HYUK HER, PETER W. STEPHENS, Stony Brook University, ARTHUR J. EPSTEIN, Ohio State University, JOEL S. MILLER, University of Utah -The magnetic properties of $[Fe(TCNE)(NCMe)_2][FeCl_4]$ (TCNE = tetracyanoethylene), a molecule-based magnet synthesized via reaction of $FeCl_2(NCMe)_2$ with TCNE in CH₂Cl₂. M(T) is discussed. Both $\chi'(T)$ and $\chi''(T)$, ac susceptibilities are almost frequency independent, and exhibit a sharp peak at ~ 90 K in accord with T_c . The zero field cooled (ZFC) and field cooled (FC) magnetic susceptibilities, $\chi_{ZFC}(T)$ and $\chi_{FC}(T)$, at 5 Oe rise sharply below 95 K indicative of a magnetic transition. $\chi_{ZFC}(T)$ reaches maximum at 88 K followed by a rapid decrease suggesting an antiferromagnetic (AFM) ground state attributed to AFM coupling between ferrimagnetically ordered $[Fe[TCNE](NCMe)_2]^+$ layers. In contrast, $\chi_{FC}(T)$ rises upon further cooling suggesting a strong irreversibility and indicating the presence of a remanant magnetization below 90 K, which increases upon cooling. $[Fe(TCNE)(NCMe)_2][FeCl_4]$ is the initial member of a new class of magnets. It is the first metal-TCNE magnet with direct bonding between metal ion and [TCNE]⁻whose structure has been determined, and it possesses a novel planar μ_4 -[TCNE]⁻ spin coupling unit.

¹Supported in part by the DE-FG03-93ER45504 and DE-FG02-01ER4593 grants.

Konstantin Pokhodnya University of Utah/Ohio State University

Date submitted: 27 Dec 2006

Electronic form version 1.4