A new approach to in full potential multiple scattering theory electronic structure calculations1 G.M. STOCKS, ORNL, YANG WANG, PSC, AURELIAN RUSANU, DON M. NICHOLSON, MARKUS EISENBACH, YEVEN-GENIY PUZYREV, ORNL — Despite the wide use of first principles electronic multiple scattering theory methods there realization as full potential methods has proved problematical with the consequence that atomic relaxation in not typically performed due to the lack of accurate forces. Here we describe some new techniques that facilitate an easy implementation of these full potential methods. In the determination of the scattering path matrix(t-matrix) we eschew the expansion of the shape function and use surface integrals to determine scattering t-matrix. We also use a new method is the treatment of Poisson problem where the charge density is divided in a spherical non-overlapping charge, which is treated using standard methods, and a pseudo charge which is treated by FFT-methods.

1Research sponsored by DOE-OS, BES-DMSE and OASCR-MICS under contract number DE-AC05-00OR22725 with UT-Battelle LLC. The calculations presented were performed at the Center for Computational Sciences (CCS) at ORNL and at the National Energy Research Scient

Aurelian Rusanu
ORNL

Date submitted: 03 Dec 2006 Electronic form version 1.4