Abstract Submitted for the MAR07 Meeting of The American Physical Society

Coercivity

and

Nano-structure in Magnetic Spinel Mg(Mn,Fe)₂**O**₄ CHENGLIN ZHANG, S. YEO, S.-W. CHEONG, Department of Physics & Astronomy, Rutgers University, Piscataway, New Jersey 08854, Y. HORIBE, S. MORI COLLABORATION¹, C. M. TSENG, C. H. CHEN COLLABORATION² — We discovered that the micro-to-nano-structure of Mg(Mn,Fe)₂O₄ drastically changes with different thermal treatment. This extraordinary structural evolution is associated with spinodal chemical decomposition associate with the Jahn-Teller structural distortions around Mn ions. The magnetic properties of the polycrystalline Mg(Mn,Fe)₂O₄ vary with the structural progress. Particularly, the Curie temperature and magnetic coervcivity considerably change with the structural evolution. The significantly-enhanced coercivity in the system with elongated nanostuructre stems from the large shape anisotropy of the nanostructure.

¹Dept. of Physics, Osaka Prefecture Univ, Japan ²Center for Condensed Matter Sciences, National Taiwan University, Taiwan

Chenglin Zhang

Date submitted: 03 Dec 2006

Electronic form version 1.4