Physical properties of VO$_2$ and V$_2$O$_3$ nanowires.1 WEI CHEN, JIANG WEI, DAVID COBDEN, University of Washington — Both VO$_2$ and V$_2$O$_3$ show dramatic metal-insulator transitions, whose manifestations on the nanoscale are not known. We investigate techniques to differentiate and pattern the metallic and insulating domains in small VO$_2$ crystals and nanowires grown by vapor phase deposition. For instance, it has been reported that insulating VO$_2$ can be metallized by electron beam exposure and by hydrogenation. We attempt to distinguish the domains by scanning probe techniques, including topography and electric force microscopy, and observe a pinning effect of the domains by oscillating strain variations when the nanowire is attached to a substrate. When the strain is released by etching, the pinning is removed. The VO$_2$ crystals can be converted to V$_2$O$_3$ crystals by reducing in hydrogen and annealing. By patterning the V$_2$O$_3$ on the nanoscale we aim to realize strongly correlated quantum dots.

1Work supported by US Army Research Office

Jiang Wei
University of Washington

Date submitted: 20 Nov 2006