Abstract Submitted for the MAR07 Meeting of The American Physical Society

Physical properties of VO_2 and V_2O_3 nanowires.¹ WEI CHEN, JIANG WEI, DAVID COBDEN, University of Washington — Both VO₂ and V₂O₃ show dramatic metal-insulator transitions, whose manifestations on the nanoscale are not known. We investigate techniques to differentiate and pattern the metallic and insulating domains in small VO₂ crystals and nanowires grown by vapor phase deposition. For instance, it has been reported that insulating VO₂ can be metallized by electron beam exposure and by hydrogenation. We attempt to distinguish the domains by scanning probe techniques, including topography and electric force microscopy, and observe a pinning effect of the domains by oscillating strain variations when the nanowire is attached to a substrate. When the strain is released by etching, the pinning is removed. The VO₂ crystals can be converted to V₂O₃ or ystals by reducing in hydrogen and annealing. By patterning the V₂O₃ on the nanoscale we aim to realize strongly correlated quantum dots.

¹Work supported by US Army Research Office

Jiang Wei University of Washington

Date submitted: 20 Nov 2006

Electronic form version 1.4