Abstract Submitted
for the MAR07 Meeting of
The American Physical Society

Controlling Spin-Density Wave Periodicity in Thin Cr$_{1-x}$V$_x$ Films
OLEG KRUPIN, University of Oregon, ELI ROTENBERG, Advanced Light Source, S. D. KEVAN, University of Oregon — Chromium is an itinerant antiferromagnet with a spin-density wave (SDW) ground state driven by a nesting of Fermi surface sheets around the Gamma and H points of the Brillouin zone. Periodicity of the SDW plays an important role in mediating magnetic interactions in magnetic multilayer structures providing a giant magnetoresistance effect and potentially interesting for application in spintronic devices. Therefore control of SDW in thin chromium films is of the high importance. It requires a detailed understanding of phenomena related to stabilization of SDW. We used angle-resolved photoemission to characterize spin-density wave and Fermi surface topology in thin Cr$_{1-x}$V$_x$ films as a function of the film thickness, temperature, composition and hydrogen surface coverage. A key feature of our results is the ability to control the magnetic structure of thin films of Cr with an external perturbation: balancing the surface energetic interactions favored commensurate state of SDW vs. the energy associated with Fermi surface topology stabilizing SDW incommensurate phase in the bulk.

Oleg Krupin
University of Oregon

Date submitted: 20 Nov 2006