Abstract Submitted
for the MAR07 Meeting of
The American Physical Society

Temperature Induced Modifications of SiC Interfaces studied by
High Resolution Electron Energy Loss Spectroscopy1 J.A. SCHAEFER, M.
EREMTCHENKO, J. UHLIG, A. NEUMANN, R. OETTKING, S.I.-U. AHMED,
Institut fuer Physik und Institut fuer Mikro- und Nanotechnologien, Technische Universitaet Ilmenau — High resolution electron energy loss spectroscopy (HREELS) is
a fascinating tool for studying electronic and vibrational properties in the near sur-
face regime. For SiC, a wide band gap semiconductor suited for several applications,
the surface and interface chemical reactivity needs to be thoroughly understood. In
addition to atmospheric adsorbates, C- and Si-terminated cub- and hex-SiC, changes
in carrier concentration profiles and band bendings can be monitored by compar-
ing HREELS-data with dielectric theory. There, the surface state density related
to the reconstruction type and surface composition is important together with the
substrate temperature. For oxygen on 6H-SiC (0001), we observed for the first time
new vibrational modes linked to distinct Si-O-Si vibrations, namely its asymmetric-
and symmetric stretching vibrations and wagging motion. The energy and intensity
of the asymmetric stretching frequency is analogous to the initial stage oxidation of
Si surfaces.

1Financial support was provided by the Deutsche Forschungsgemeinschaft (DFG)
under grant Scha 435/17-1.

J.A. Schaefer
Institut fuer Physik und Institut fuer Mikro- und Nanotechnologien, Technische Universitaet Ilmenau

Date submitted: 03 Dec 2006

Electronic form version 1.4