Abstract Submitted for the MAR07 Meeting of The American Physical Society

Coulomb attraction and defects in dilute magnetic semiconductors P. L. REIS, M.A. MAJIDI, J. MORENO, University of North Dakota, R.S. FISHMAN, Oak Ridge National Lab, M. JARRELL, University of Cincinnati — Employing the dynamical mean-field approximation we study the phase diagram of a double-exchange model that includes interactions between the holes and the local magnetic moments and also the negatively charged ions. We calculate the ferromagnetic transition temperature, magnetization and susceptibility for a range of parameters and compare the results of a single band model with a four-band model which properly includes the heavy and light bands. The inclusion of the Coulomb attraction allows a better comparison with experiments by reducing the values of the exchange coupling needed to support a ferromagnetic transition. For small or intermediate exchange couplings the Coulomb attraction increases the transition temperature. We will also study a model where additional non-magnetic defects are included in the Hamiltonian. In the presence of these defects the ferromagnetic transition is expected to be rapidly suppressed.

> Juana Moreno University of North Dakota

Date submitted: 21 Nov 2006

Electronic form version 1.4