Abstract Submitted for the MAR07 Meeting of The American Physical Society

Figure of merit for thermoelectric power generation estimated from enhanced mobility in [100] oriented β -FeSi₂ thin film HIRO-FUMI KAKEMOTO, Tokyo Institute of Technology, HAJIME SHIBATA, AIST, SATOSHI WADA, TAKAAKI TSURUMI, Tokyo Institute of Technology — β -FeSi₂ has been attracted to be applied to the thermoelectric device, for instance, the Seebeck coefficient shows the maximum value about 500°C that it is good for thermoelectric power generation. However low figure of merit (Z) has been reported about $5 \times 10^{-4} \text{ K}^{-1}$. The Z is represented as $m^{*2/3}(\mu/\kappa_{ph})$, where m^* , μ and κ_{ph} are effectively tive mass, mobility and thermal conductivity, respectively. Although κ_{ph} is good for thermoelectric power, low μ has been reported as polaronic-conduction in β -FeSi₂ crystal. In 3D electron density distribution of β -FeSi₂ crystal, Si layer in the crystal shows covalent bonding network with Si atoms, and it suggests the new possibility for enhancement of μ . In this report, the objective is to exhibit the possibility for enhancement of Z in order to control the crystallographic orientation of β -FeSi₂ crystal by means of film formation. β -FeSi₂ thin film was prepared on Si(100) substrate using molecular beam epitaxy method. The crystallographic orientation of sample showed about 80% of [100] direction from x-ray diffraction pattern. The transport properties were investigated using Hall measurement with van der Pauw electrode configuration. The resistivity and μ were also measured, and they were compared with β -FeSi₂ polycrystal. In addition, enhancement of Z was estimated using above formula.

> Hirofumi Kakemoto Tokyo Institute of Technology

Date submitted: 22 Nov 2006 Electronic form version 1.4