Abstract Submitted for the MAR07 Meeting of The American Physical Society

Far-infrared signature of a superconducting gap in intercalated graphite CaC₆. U. NAGEL, D. HUVONEN, T. ROOM, NICPB, Tallinn, J.S. KIM, L. BOERI, R. K. KREMER, MPI for Solid State Physics, Stuttgart, F. S. RAZAVI, Brock Univ., St. Catharines, Ont. — CaC₆ is exceptional in the series of intercalated graphite compounds because of its high superconducting transition temperature, T_c =11.5K. The superconducting gap, 2Δ =25.6 ± 3.2cm⁻¹, measured by scanning tunneling spectroscopy (N. Bergeal et al., PRL 97, 077003 (2006)), is consistent with the weak-coupling BCS type superconductivity. The superconducting gap can be directly probed also by far-infrared spectroscopy. We studied the reflectance R of CaC₆ between 4 and 100cm⁻¹ from 3K to 15K. We see the signature of the superconducting gap in the reflectance ratio of superconducting state R_s to the normal state R_n and can follow its temperature dependence. The appearance of the gap signature in R_s/R_n tells us that CaC₆ is in the dirty limit. Different models, including an anisotropic gap and a multi-gap scenario, will be discussed to fit the optical data.

> Urmas Nagel Nat.-l Inst. of Chem. Phys. & Biophys., Tallinn, Estonia

Date submitted: 03 Dec 2006

Electronic form version 1.4