Magnetic particle imaging with a cantilever torque magnetometer
JOHN MORELAND, JASON ECKSTEIN, NIST, Boulder, CO, YUSHUN LIN, SY-HWANG LIOU, Department of Physics, University of Nebraska, Lincoln, NE, STEVEN RUGGIERO, Department of Physics, University of Notre Dame, Notre Dame, IN — We have demonstrated magnetic particle imaging\(^1\) with a cantilever torque magnetometer. Imaging is based on measuring the harmonic content of the magnetic moment of a particle driven to saturation by an applied ac magnetic field while adjusting the zero point of the field gradient with a slowly sweeping dc magnetic field. Large field gradients (> 100 T/m) necessary for high resolution imaging can be generated by opposing electromagnets with ferrite cores and thus there is the potential for submicrometer image resolution. Results on an array of 50 \(\mu \)m Permalloy dots patterned on microcantilevers will be reported. \(^1\)B. Gleich and J. Weizenecker, Nature 435, 1214 (2005).