Dynamical structure factor of CaF$_2$: Striking coherent dynamical screening of “atomic” Ca-derived excitations

O.D. RESTREPO, M.C. TROPAREVSKY, A.G. EGUILUZ, U. Tennessee and ORNL, B.C. LARSON, J.Z. TISCHLER, ORNL, P. ZSCHACK, Cornell, Y.Q. CAI, H. ISHII, P. CHOW, NSRRC, Taiwan, E.L. SHIRLEY, NIST, C.C. KAO, BNL — We report ab initio calculations of the dynamical structure factor of CaF$_2$ performed within time-dependent density functional theory, together with non-resonant inelastic x-ray scattering measurements. The “effective” dielectric function has also been determined. The excitations derived from the “atomic” Ca 3p\rightarrow3d process display a striking wave vector dependence. Such dipole-allowed excitation would be expected to lie at about 27 eV. However, for small q’s the leading Ca 3p\rightarrow3d feature lies at about 35 eV. We demonstrate that this feature corresponds to a collective mode, whose physics embodies a remarkable manifestation of crystal local-field effects induced by charge localization and their interplay with the dynamical screening at the “natural” 3p\rightarrow3d energy. For intermediate q’s, the 27 eV excitation emerges and coexists with the collective mode —thus highlighting the physics of the “atomic” 3p\rightarrow3d excitation in the condensed matter environment, which is controlled by dynamical coherent screening. For large q’s the Ca-derived spectrum consists of the “single-particle” Ca 3p\rightarrow3d excitation, together with the dipole-forbidden Ca 3s\rightarrow3d excitation.

Oscar Restrepo
The University of Tennessee

Date submitted: 22 Dec 2006

Electronic form version 1.4