First-Principles electronic transport calculations in finite elongated systems: A divide and conquer approach1 ODED HOD, JUAN E. PERALTA, GUSTAVO E. SCUSERIA, Department of Chemistry, Rice University, Houston, Texas 77005 — We present a \textit{first-principles} method for the evaluation of the transmittance probability and the coherent conductance through \textit{finite-elongated} systems composed of a repeating molecular unit and terminated at both ends. Our method is based on a divide and conquer approach in which the Hamiltonian of the elongated system can be represented by a block tridiagonal matrix, and therefore can be readily inverted. This allows us to evaluate the transmittance and the conductance using \textit{first-principles} electronic structure methods without explicitly dealing with calculations involving the entire system. A proof of concept model based on a trans-polyacetylene chain bridging two aluminum leads indicates that our divide and conquer approach is able to capture all of the features appearing in the transmittance probability curves of a full scale calculation. Using our method we investigate the edge effects on the electronic structure of finite sized carbon nanotubes as a function of their length and identify the limit at which the electronic structure converges to that of an infinite system.

1This research was supported by the National Science Foundation under Grant CHE-0457030. O.H. would like to thank the generous financial support of the Rothschild and Fulbright foundations.

Oded Hod
Department of Chemistry, Rice University, Houston, Texas 77005

Date submitted: 06 Dec 2006

Electronic form version 1.4