MAR07-2006-020174

Abstract for an Invited Paper for the MAR07 Meeting of the American Physical Society

On the question of "dry" proton motion in ionic liquids and plastic crystals C. AUSTEN ANGELL, Arizona State University

In supercooled water containing 0.01MHCl, the ionic conductivity at -32° C is more than an order of magnitude higher than would be predicted from its fluidity. The developing tetrahedral order and the associated high vib-librational anharmonicity, permits efficient "dry" proton "hopping" transfer of protons between favorable sites. Reproducing this transport mechanism in non-aqueous (and preferably also solid) phases is a leading aim of current research. We report progress in this direction substituting water by spinning protonated cations such as NH₄⁺ and CH₃NH₃⁺, and anions such as HSO₄⁻, HPO₃F⁻ and H₂PO₄⁻ for the water molecules, studying both liquid and plastic crystal phases. We use pulsed field gradient NMR to distinguish proton motion from host ³¹P species motion, and use double quantum techniques to study ¹H...³¹P separation kinetics.