Abstract Submitted
for the MAR07 Meeting of
The American Physical Society

Dephasing of a superconducting flux qubit

KOSUKE KAKUYANAGI, NTT Basic Research Laboratories, NTT Corporation, TAKAYOSHI MENO, NTT Advanced Technology, NTT Corporation, SHIRO SAITO, HAYATO NAKANO, KOUICHI SEMBA, NTT Basic Research Laboratories, NTT Corporation, HIDEAKI TAKAYANAGI, Tokyo University of Science, FRANK DEPPE, Walther-Meissner-Institut, ALEXANDER SHNIRMAN, Institut fur Theoretische Festk — In order to gain a better understanding of the origin of decoherence in superconducting flux qubits, we have measured the magnetic field dependence of the characteristic energy relaxation time \(T_1 \) and echo phase relaxation time \(T_{\text{echo}}^2 \) near the optimal operating point of a flux qubit.

We have measured \(T_{\text{echo}}^2 \) by means of the phase cycling method. At the optimal point, we found the relation \(T_{\text{echo}}^2 \sim 2T_1 \). This means that the echo decay time is limited by the energy relaxation (\(T_1 \) process). Moving away from the optimal point, we observe a linear increase of the phase relaxation rate (\(1/T_{\text{echo}}^2 \)) with the applied external magnetic flux. This behavior can be well explained by the influence of magnetic flux noise with a \(1/f \) spectrum on the qubit.

K.Kakuyanagi, et al., cond-mat/0609564

1This work was partially supported by JSPS KAKENHI (18201018), MEXT KAKENHI (18001002) and JST-CREST.

Kosuke Kakuyanagi
NTT Basic Research Laboratories, NTT Corporation

Date submitted: 25 Dec 2006