Abstract Submitted for the MAR07 Meeting of The American Physical Society

TOF measurements of He and D_2 molecules scattered from clean and H-covered Si(100) surfaces.¹ S. UENO, A.R. KHAN, Y. KIHARA, S. SATO, Y. NARITA, A. NAMIKI, TOF TEAM — Angular distribution of He or H₂ (D₂) scattered from Si(100) surfaces has been found to be broad. In case of H₂, such a broad scattering was considered as evidence of physisorption. Our aim is to know whether light atoms and molecules such as He or D₂ are physisorbed upon collision with Si (100) surfaces. Using 300 K effusive beam, we measured Time-Of-Flight (TOF) distributions of He and D₂ molecules scattered from clean and H-terminated Si(100) surfaces at surface temperature T_s = 300 and 600 K. We found that for T_s = 300 K the scattered He atoms show a Maxwellian velocity distribution characterized with translational temperature of T_t=300 K. At T_s = 600 K, on the other hand, the net increase in translational temperature was found to be very small, about 340 K. Similar results were also found on the H-terminated surfaces. These results indicate that the scattered atoms or molecules have not accommodated with the surface, suggesting physisorption does not take place.

¹This work was financially supported by the Grant-in-Aid from the ministry of education, science, sport and culture of Japan.

S. Ueno

Date submitted: 28 Dec 2006

Electronic form version 1.4