TOF measurements of He and D$_2$ molecules scattered from clean and H-covered Si(100) surfaces.1 S. UENO, A.R. KHAN, Y. KIHARA, S. SATO, Y. NARITA, A. NAMIKI, TOF TEAM — Angular distribution of He or H$_2$ (D$_2$) scattered from Si(100) surfaces has been found to be broad. In case of H$_2$, such a broad scattering was considered as evidence of physisorption. Our aim is to know whether light atoms and molecules such as He or D$_2$ are physisorbed upon collision with Si (100) surfaces. Using 300 K effusive beam, we measured Time-Of-Flight (TOF) distributions of He and D$_2$ molecules scattered from clean and H-terminated Si(100) surfaces at surface temperature T_s = 300 and 600 K. We found that for T_s = 300 K the scattered He atoms show a Maxwellian velocity distribution characterized with translational temperature of T_t=300 K. At T_s = 600 K, on the other hand, the net increase in translational temperature was found to be very small, about 340 K. Similar results were also found on the H-terminated surfaces. These results indicate that the scattered atoms or molecules have not accommodated with the surface, suggesting physisorption does not take place.

1This work was financially supported by the Grant-in-Aid from the ministry of education, science, sport and culture of Japan.