11B Nuclear Magnetic Resonance Measurements of Antiferromagnetic DyB$_4$ Single Crystals I. N. HYUN, B. J. MEAN, K. H. KANG, J. H. KIM, S. K. KWON, S. K. NAM, S. H. CHOI, S. H. KIM, MOOHEE LEE, Konkuk University, Seoul 143-701 Korea, B. K. CHO, GIST, Gwangju 500-712 Korea, J. H. CHO, Hangyoung FLHS, Seoul 134-710 Korea — 11B pulsed nuclear magnetic resonance (NMR) measurements have been performed to investigate local electronic structures and 4f spin dynamics in antiferromagnetic DyB$_4$ single crystals. 11B NMR spectrum, Knight shift, spin-lattice and spin-spin relaxation rates, $1/T_1$ and $1/T_2$, were measured down to 4.3 K under magnetic field of 8 T. The 11B NMR shift and linewidth are huge and strongly temperature-dependent due to 4f moments of Dy. In addition, both are proportional to magnetic susceptibility, indicating that the hyperfine field at the boron site originates from the 4f spins of Dy. Below $T_N = 20$ K, the single broad resonance peak of 11B NMR splits into several peaks reflecting the local magnetic fields developed due to the antiferromagnetic spin arrangement. The relaxation rates $1/T_1$ and $1/T_2$ are very large and independent of temperature much above T_N and then decrease significantly below T_N confirming the suppression of spin fluctuation and the huge change in 4f spin dynamics associated with the antiferromagnetic ordering.

Moohee Lee
Konkuk University, Seoul 143-701 Korea

Date submitted: 29 Dec 2006