Abstract Submitted for the MAR08 Meeting of The American Physical Society

Superconductivity in $La(Ni_{1-x}T_x)C_2$ (T = Cu, Ti, and Pt)¹ H.H. SUNG, S.Y. CHOU, Y.C. KUNG, H.K. KUO, K.J. SYU, W.H. LEE, Department of Physics, National Chung Cheng University, Ming-Hsiung, Chia-Yi, Taiwan, ROC, W.H. LEE TEAM — LaNiC₂, which crystallizes in an orthorhombic CeNiC₂ type structure with space group A_{mm2} , is the first nickel-based ternary carbide superconductor with T_c $\bar{} \sim 2.7~{\rm K}.^{1,2}$ Previous report showed that about 50% substitution of La in $LaNiC_2$ with the 5f thorium (Th) element could enhance the superconducting critical temperature T_c up to 7.9 K.³ We present the results of static magnetization and electric resistivity data for fifteen polycrystalline $La(Ni_{1-x}T_x)C_2$ (T = Cu, Ti and Pt) compounds measured in the temperature range $1.8 \sim 4.4$ K and $2.0 \sim 300$ K, respectively. Discussion of the improvement, with respect to pure $LaNiC_2$, on the superconducting critical temperature T_c will be directed toward the changes of valence, lattice parameters as well as the effects of solubility limit in the pseudoternary $La(Ni_{1-x}T_x)C_2$ alloys. ¹W.H. Lee, H.K. Zeng, Y.D. Yao and Y.Y. Chen, Physica C 266, 138 (1996). ²V.K. Pecharsky, K.A. Gschneidner, Jr., and L.L. Miller, Phys. Rev. B 58, 497 (1998). ³W.H. Lee and H.K. Zeng, Solid State Commun. 102, 433 (1997).

¹Supported by the National Science Council of ROC under grant no. NSC 96-0212-M-194-008-MY3.

> Wun-Hsin Lee National Chung Cheng University, Ming-Hsiung, Chia-Yi, Taiwan, ROC

Date submitted: 05 Dec 2007

Electronic form version 1.4