Abstract Submitted for the MAR08 Meeting of The American Physical Society

Antiferromagnetism in the Kondo lattice system $Ce(Ni_{0.25}In_{1.75})$.¹ W.H. LEE, H.H. WU, H.H. SUNG, K.J. SYU, Department of Physics, National Chung Cheng University, Ming-Hsiung, Chia-Yi, Taiwan, ROC, Y.Y. CHEN, Academia Sinica, Nankang, Taipei, Taiwan, ROC, W.H. LEE/Y.Y. CHEN TEAM — The pseudobinary compound $Ce(Ni_{0.25}In_{1.75})$, which crystallizes in a hexagonal AlB₂ type structure with space group P6/mmm, exhibits antiferromagnetic ordering below the temperature 3.9 K, as revealed in the magnetic susceptibility, electrical resistivity and low-temperature specific-heat data. A $\ln(T)$ dependence is seen in the high temperature region for the magnetic contribution to the resistivity ρ_m , which is one of the characteristic features of dense Kondo systems. The magnetic entropy $S_m(T_N)$ associated with the magnetic structure of $Ce(Ni_{0.25}In_{1.75})$ is found to be only 62% of Rln(2), corresponding to a reduction of 38% of the cerium moment. This large magnetic reduction may be able to be attributed to Kondo effect. The heat capacity C(T) of $Ce(Ni_{0.25}In_{1.75})$, in the paramagnetic state at temperatures between 8 and 20 K, can be fitted to the expression $C_n = \gamma T + \beta T^3$ by a least squares analysis, which yields the value $\gamma = 123 \text{ mJ/mol K}^2$ and $\beta = 1.2 \text{ mJ/mol}$ K^4 , the latter value corresponding to the Debye temperature $\Theta_D = 169$ K.

¹Supported by the National Science Council of ROC under grant no. NSC 96-0212-M-194-008-MY3

> Wun-Hsin Lee Department of Physics, National Chung Cheng University

Date submitted: 05 Dec 2007

Electronic form version 1.4