Abstract Submitted for the MAR08 Meeting of The American Physical Society Non-Collinear Magnetic Orderings in Mott Insulators ALEXAN-DER BAZHAN¹, P.L. Kapitza Institute for Physical Problems, RAS, — Noncollinear magnetic orderings of four Cu magnetic moments in Mott insulators Rd₂CuO₄(R =Nd, Pr) of I4/mmm symmetry and associated magnetic phase transitions are of interest in studies of transformations, when correlated electron-hole carriers are introduced in $R_{2-x}Ce_xCuO_{4\pm\delta}$. Orderings are determined by thermodynamic potential in representation by antiferromagnetic l_1 , l_2 and magnetic mvectors, with orderings of l_1 , l_2 vectors along [100], [010] axis, with values $l_1^2 = l_2^2 =$ 1/2 \mathbf{l}_{0}^{2} , [1], which can be presented as, $\Phi = 1/2$ A($\mathbf{l}_{1}^{2} + \mathbf{l}_{2}^{2}$) + 1/2 $\mathbf{A}_{3}\mathbf{l}_{3}^{2}$ + 1/2 \mathbf{Bm}^{2} + 1/2 D [($\mathbf{l}_{1}\mathbf{m}$)² + ($\mathbf{l}_{2}\mathbf{m}$)²] + 1/2 D₃($\mathbf{l}_{3}\mathbf{m}$)² + 1/4 I($\mathbf{l}_{1}^{2} + \mathbf{l}_{2}^{2}$) + 1/4 I₃ \mathbf{l}_{3}^{2} + 1/4 E (\mathbf{l}_{1}^{2} – \mathbf{l}_{2}^{2})² + 1/4 a ($\mathbf{l}_{1z}^{2} + \mathbf{l}_{2z}^{2}$) + 1/4 a \mathbf{l}_{3z}^{2} – 1/4 b₂[($\mathbf{l}_{1y}^{2} + \mathbf{l}_{2x}^{2}$) - ($\mathbf{l}_{1x}^{2} + \mathbf{l}_{2y}^{2}$)] - 1/4 b₄[($\mathbf{l}_{1y}^{2} + \mathbf{l}_{2x}^{2}$)² + ($\mathbf{l}_{1x}^{2} + \mathbf{l}_{2y}^{2}$)²] - $\mathbf{m}\mathbf{H}$ where \mathbf{l}_{3} =0. Magnetic phase transitions, are concerned with change of l_1 , l_2 values in fields $\sim H_{c1}$, $\sim H_c$, where $l_1^2 = 0$, $l_2^2 = l_0^2$, when field is oriented along [100], [110] axis respectively, and next l₂rotation to orthogonal to field direction in fields $\sim H_{c2}$, when field is along [110] axis. Fields H_{c1} , H_{c} , H_{c2} are presented as, $H_{c1}^2 = 2BEI_0^4$; $H_c^2 = H_{c1}H_{c2}$, if $H_{c2}^2 = b_2BI_0^2$; $H_c^2 = \sqrt{2} \cdot H_{c1}H_{c2}$ if $H_{c2}^2 = b_4 B l_0^4$. Formation of charge density waves of checkerboard structure can be detected by studies of transformation of magnetic phase transitions and fields in $R_{2-x}Ce_xCuO_{4\pm\delta}$. [1]. A. N. Bazhan, AIP Proceedings 850 (2006) 1241 ¹ul. Kosygina, 2, 119334 Moscow, Russia Alexander Bazhan P.L. Kapitza Inastitute for Physical Problems, RAS, Date submitted: 26 Oct 2007 Electronic form version 1.4