Anisotropic photo-control of spontaneous polarization in BiFeO$_3$ thin films: Indications of photo-assisted magnetoelectric effect

D.S. RANA, I. KAWAYAMA, H. MURAKAMI, M. TONOUCHI, Institute of Laser Engineering, Osaka University, Japan, INSTITUTE OF LASER ENGINEERING, OSAKA UNIVERSITY, JAPAN TEAM — The terahertz (THz) emission from multiferroic BiFeO$_3$ (BFO) due to ultra-fast depolarization of electric order helps in evaluating its ferroelectric behavior [1]. In this work, we investigate THz-emission in BFO films on (LaAlO$_3$)$_{0.3}$($\text{Sr}_2\text{AlTaO}_6$)$_{0.7}$ (LSAT) substrates along (100), (110) and (111) directions. THz emission amplitude (E_{THz}) and its electric field dependence are similar in BFO (100) and BFO (110); E_{THz} as function of electric field translates to ferroelectric-like hysteresis loop, and sign and amplitude of THz-emission are commensurate with the applied electric field. On the contrary, in BFO (111) the hysteretic loop is absent, E_{THz} varies linearly with electric field and the polarity of THz-emission is opposite to that of the electric field. These results suggest that THz-emission is mainly a result of ultrafast depolarization but with a superimposed character of ultrafast reorientation or demagnetization of antiferromagnetic (AFM) order. Though AFM order in BFO makes the determination of magnetoelectric (ME) coupling rather difficult, the photo-assisted electric field control of AFM order shown in the present work is suggestive of photo-assisted ME effect. 1. K. Takahashi et al., Phys. Rev. Lett. 96, 117402 (2006).