MAR08-2007-000154

Abstract for an Invited Paper for the MAR08 Meeting of the American Physical Society

Strain tunability and domain structures of epitaxial (001) $BiFeO_3$ thin films¹ CHANG-BEOM EOM, University of Wisconsin-Madison

It was recently discovered that the spontaneous polarization (P_s) values determined in epitaxial BiFeO₃ thin films, ~100 μ C/cm², are over an order of magnitude higher than those previously measured in bulk samples. This raises a fundamental question: can the remanent polarization and other properties of BiFeO₃ be tuned by strain? We studied the strain dependence of remanent polarization and domain structures of BiFeO₃ through direct measurements on the *same* epitaxial (001)_p BiFeO₃ thin-film capacitors before and after releasing them from an underlying Si substrate. Our measurements reveal that: (1) the large P_s of BiFeO₃ is indeed intrinsic; (2) the out-of-plane polarization (P_3) of $(001)_p$ -oriented BiFeO₃ thin films has a strong strain dependence. These findings can be exploited in studying symmetry-dependent magnetoelectric coupling of BiFeO₃, where strain and/or symmetry play a role in the coupling because the direction of magnetic spin ordering is not parallel to that of ferroelectric polarization switching.

¹This work has been done in collaboration with H. W. Jang, S. H. Beak, D. Ortiz, C. M. Folkman, R. R. Das, Y. H. Chu, P. Shafer, J. X. Zhang, S. Choudhury, V. Vaithyanathan, Y. B. Chen, X. Q. Pan, D. G. Schlom, L. Q. Chen, and R. Ramesh.