MAR08-2007-000156

Abstract for an Invited Paper for the MAR08 Meeting of the American Physical Society

Quantum critical behavior in the superfluid density of strongly underdoped ultrathin copper oxide films¹ THOMAS LEMBERGER, The Ohio State University

The relationship between transition temperatures T_C and superfluid densities $n_S(0)$ of cuprate superconductors has been a central issue in cuprate superconductivity from the beginning. When mobile holes are removed from optimally doped CuO_2 planes, T_C and $n_S(0)$ decrease in a surprisingly correlated fashion. Recent measurements of the superfluid density of strongly underdoped YBa₂Cu₃O_{7- δ} films and crystals have found a square-root scaling, $T_C \propto n_S(0)^{\alpha}$ where $\alpha \approx 1/2$, which supplants the approximately linear proportionality that had been deduced long ago from less underdoped samples by Uemura et al. and had been ascribed to the quasi-2D structure of cuprates. This situation leads back to a basic question – what is the behavior of the fundamental structural unit, namely, a single CuO_2 layer or bilayer, which is truly two-dimensional by construction? To address this question, we studied 2D samples near the critical doping level where superconductivity disappears. We measured $n_S(T)$ in films of $Y_{1-x}Ca_xBa_2Cu_3O_{7-\delta}$ as thin as two CuO_2 bilayers. T_C 's were as low as 3 K. We observed the 2D Kosterlitz–Thouless–Berezinski drop in n_S at T_C , and we recovered the linear scaling $T_C \propto n_S(0)$ expected in 2D due to fluctuations in the phase of the superconductivity with underdoping is ultimately due to quantum fluctuations near a quantum critical point.

¹Work performed with I. Hetel and M. Randeria; supported in part by NSF-DMR.