Novel Radiation Sources Based on Ultra-High-Power Lasers: New Capabilities for Radiology and Radiotherapy

DONALD UMSTADTER, University of Nebraska, Lincoln

As the maximum power level of compact lasers steadily increases, new opportunities are enabled for their use in bio-medicine and medicine. For instance, the Diocles laser at the University of Nebraska, Lincoln, now produces a peak power of 150-terawatts (1.5x10^{14} W) from a table-top-size system. When light at this power level is focused, it can accelerate electrons, and produce quasi-monoenergetic beams of x-rays, similar to those produced by much larger synchrotron light sources. Such MeV-energy beams create new opportunities in biomedicine, radiology and radiography. Examples to be discussed include structural analysis of bio-molecules, diffraction-enhanced imaging for computed tomography, and radio-sensitization-enhanced radiotherapy. This talk will describe the current status of laser-based x-ray technology, as well as the potential advantages and prospects for their use in medicine.

1Supported by AFOSR, DARPA, DHS, DOE and NSF.