Abstract Submitted for the MAR08 Meeting of The American Physical Society

Interchange-Tunneling Splitting in HCl Dimer in Helium Nanodroplets DMITRY SKVORTSOV, RUSSELL SLITER, Univ of Southern California, MYONG YONG CHOI¹, Gyeongsang National University, ANDREY F. VILESOV, Univ of Southern California — Infrared spectra of HCl dimers have been obtained in helium nanodroplets. The splitting in the vibrationally excited state of the bonded H-Cl stretching band (v_2) in $(H^{35}Cl - H^{37}Cl)$ dimers was obtained to be 2.7 cm⁻¹ as compared to 3.7 cm⁻¹ in free dimer. From the splitting, the strength of the interchange-tunneling interaction in liquid helium was obtained to be 0.85 cm⁻¹, which is about a factor of two smaller than in the free dimer. The results are compared with the previous spectroscopic study of $(HF)_2$ in He droplets as well as to the theoretical study of $(HF)_2$ and $(HCl)_2$ dimers in small He clusters.

¹Gyeongsang National University, Jinju, 660-701, South Korea

Dmitry Skvortsov Univ of Southern California

Date submitted: 07 Nov 2007

Electronic form version 1.4