Abstract Submitted for the MAR08 Meeting of The American Physical Society

Optical Properties of Organic Superconductor κ -(BETS)₂FeBr₄¹ M. REEDYK, N. HOSSEIN KHAH, B. LIU, G.V. SUDHAKAR RAO, Brock University, St. Catharines, Canada, H. FUJIWARA, Osaka City University, Japan, H. KOBAYASHI, M.A. TANATAR², K. YAKUSHI, T. NAKAMURA, Institute for Molecular Science, Okazaki, Japan — The optical response to far- and midinfrared radiation has been measured for quasi two-dimensional plate-shaped crystals of κ -(BETS)₂FeBr₄ [where BETS = bis(ethylenedithio)-tetraselenafulvalene]. κ -(BETS)₂FeBr₄ is the first antiferromagnetic organic superconductor at ambient pressure with Néel temperature $T_N = 2.5 \text{ K}$ and superconducting transition temperature $T_C = 1.1$ K. Polarized thermal reflectance measurements were performed to compare the reflectance above and below T_C and T_N using a Martin-Pupletttype polarizing interferometer and ³He cryostat. In addition polarized absolute reflectance measurements in the far- and mid-infrared were carried out at temperatures in the normal state between 4 K and 300 K using a Michelson interferometer and cold finger cryostat. Kramers-Kronig analysis was then used to determine the optical conductivity of κ -(BETS)₂FeBr₄ at these temperatures.

Maureen Reedyk Brock University

Date submitted: 13 Nov 2007 Electronic form version 1.4

 $^{^1{\}rm This}$ work is supported by NSERC Canada.

²currently at the University of Sherbrooke