Optical Absorption and Emission of Fully Conjugated Heterocyclic Aromatic Rigid-rod Polymers Containing Sulfonated Pendants

SHIH JUNG BAI, SHEN-RONG HAN, Institute of Material Science and Engineering, National Sun Yat-sen University — Fully conjugated poly[(1,7-dihydrobenzo[1,2-d:4,5-d']dimidazole-2,6-diyl)-2-(2-sulfo)-p-phenylene] (sPBI) has a para-catenated rod-like backbone, which was synthesized and fabricated for monolayer polymer light-emitting diode (PLED) showing a threshold voltage of 4.5 V and a green light (530 nm) emission. Its SO$_3$H moiety attached to the p-phenyl ring improved electron delocalization along the backbone resulted in a red shift of absorption spectrum. sPBI was further derivatized for rigid-rod polyelectrolyte sPBI-PS(Li$^+$) by attaching propanesulfonated pendants to the heterocyclic moiety of intractable sPBI for water solubility. This fully conjugated polyelectrolyte sPBI-PS(Li$^+$) was fabricated for light-emitting electrochemical cells (PLECs) with a dopant of LiCF$_3$SO$_3$ or LiN(CF$_3$SO$_2$)$_2$ for effects of propanesulfonated pendants and lithium dopants on luminescent emission and on room-temperature conductivity. sPBI-PS(Li$^+$) PLECs doped with 0.41 and 1.01 wt.% of LiN(CF$_3$SO$_2$)$_2$ showed higher green light (514 nm) electroluminescence emission intensity with a threshold voltage of 3.0 V and -4.6 V, respectively. Emission intensity of the sPBI-PS(Li$^+$) PLEC did not raise upon increasing the conductivity of the luminescent layer.

Shih Jung Bai
Institute of Material Science and Engineering,
National Sun Yat-sen University