Electronic transport in nitrogen-rich diamond

F.J. HEREMANS, G.D. FUCHS, C.F. WANG, D.D. AWSCHALOM, Center for Spintronics and Quantum Computation, University of California, Santa Barbara, CA, R. HANSON, Kavli Institute of Nanoscience, Delft University of Technology, The Netherlands — Electronic transport in carbon-based materials, including carbon nanotubes, graphene, and diamond, have been receiving significant attention as potential alternatives to silicon-based electronics. In particular, diamond’s excellent thermal properties provide a promising alternative in power-sensitive applications. Here we present studies of the photo-excited electronic transport in nitrogen-rich type IB diamonds. In addition to the study of the carrier dynamics within this system, we discuss a charge storage effect that may find potential application in charging-based memories. We find that the discharge curves follow a “stretched-exponential” form [1] with a fixed exponent, which does not depend on electrode spacing, voltage, and illumination intensity. These findings are discussed in the context of a transport mechanism in this nitrogen-rich diamond substrate.


This work was supported by AFOSR, FCRP, and CNID.