Fluctuations, mean-field T_c and energy gaps in cuprate superconductors JEFFERY TALLON, Industrial Research Ltd, JAMES STOREY, Victoria University of Wellington, JOHN LORAM, Cambridge University — We have carried out an analysis of Gaussian fluctuations about T_c in the specific heat of $(Y,\text{Ca})\text{Ba}_2\text{Cu}_3\text{O}_{7-x}$ and Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$. The analysis employs a full ARPES derived dispersion, including the pseudogap. This enables us to calculate the doping dependence of the mean-field transition temperatures, $T_{c_{mf}}$, in the absence of fluctuations. The values lie well above T_c especially for lower doping where $T_{c_{mf}}$ is trending towards 180K. As a result, while the observed T_c follows the well-known parabolic doping dependence, the values of $T_{c_{mf}}$ decrease monotonically with doping along with the superconducting gap parameter, Δ_0, such that $2\Delta_0/k_B T_c = 5$. Using this result we offer explanations for a number of anomalous observations. The line $T_{c_{mf}}(p)$ should not however be confused with the $T^*(p)$ line which is associated with the pseudogap and falls abruptly to zero at critical doping ($p_{\text{crit}}=0.19$ holes/Cu).